Wilson’s theorem for block designs

نویسنده

  • Tony Forbes
چکیده

Steiner systems S(2, k, v) For k ≥ 3, a Steiner system S(2, k, v) is usually defined as a pair (V,B), where V is a set of cardinality v of points and B is a set of k-element subsets of V , usually called blocks, or lines if the system has some geometric significance, with the property that each pair of points is contained in precisely one block. For example, to construct a Steiner system S(2, 3, 7) we may take V = {0, 1, 2, 3, 4, 5, 6} and

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binary codes and quasi-symmetric designs

obtain a new for the of a-(u, A) design the block intersection designs are eliminated by an ad hoc coding theoretic argument. A 2-(v, k, A) design 93 is said to be quasi-symmetric if there are two block intersection sizes s1 and s2. The parameters of the complementary design !3* are related to the parameters of 93 as follows: Here Ai denotes the number of blocks through a given i points (and A ...

متن کامل

Mixed Block Designs

Let V i (i = 1; 2) be a set of size v i. Let D be a collection of ordered pairs (b 1 ; b 2) where b i is a k i-element subset of V i. We say that D is a mixed t-design if there exist constants (j 1 ;j 2) (0 j i k i , j 1 + j 2 t) such that, for every choice of a j 1-element subset S 1 of V 1 and every choice of a j 2-element subset S 2 of V 2 , there exist exactly (j 1 ;j 2) ordered pairs (b 1 ...

متن کامل

Automorphism Group of a Possible 2-(121, 16, 2) Symmetric Design

Let D be a symmetric 2-(121, 16, 2) design with the automorphism group of Aut(D). In this paper the order of automorphism of prime order of Aut(D) is studied, and some results are obtained about the number of fixed points of these automorphisms. Also we will show that |Aut(D)|=2p 3q 5r 7s 11t 13u, where p, q, r, s, t and u are non-negative integers such that r, s, t, u ? 1. In addition we prese...

متن کامل

3-Homogeneous Groups and Block-Transitive 7–(v, k, 3) Designs

The classification of a block-transitive designs is an important subject on algebraic combinatorics. With the aid of MATLAB software, using the classification theorem of 3-homogeneous permutation groups, we look at the classification problem of block-transitive 7–(v, k, 3) design and prove our main theorem: If the automorphism group of a 7–(v, k, 3) design is block-transitive, then it is neithe...

متن کامل

Asymptotic existence theorems for frames and group divisible designs

In this paper, we establish an asymptotic existence theorem for group divisible designs of type mn with block sizes in any given set K of integers greater than 1. As consequences, we will prove an asymptotic existence theorem for frames and derive a partial asymptotic existence theorem for resolvable group divisible designs. © 2006 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014